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INTRODUCTION
INTUITION

In economics, agents are assumed to be endowed with a payoff
function, which is nothing else than an ordering of their preferences
over the results of their actions.

At the same time, agents are supposed to take rational choices,
meaning that they maximised these payoff functions.

For example:

Ï Consumers are meant to maximise their utility over purchases

Ï Firms are supposed to maximise profits over investments

Ï Parties maximise votes over programmes

Ï and so on...
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INTRODUCTION
DEFINITION

Let f (x) be a function of many variables defined on a set X and let S
be a subset of X . The point x∗ ∈ S solves the problem

max
x

f (x)

subject to x ∈ S

if

f (x) ≤ f (x∗) ∀x ∈ S

In this case we say that x∗ is a maximiser of f (x) subject to the
constraint x ∈ S, and that f (x∗) is the maximum (or maximum value)
of f (x) subject to the constraint x ∈ S.
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INTRODUCTION
LOCAL VS GLOBAL

Let f (x) be a function of many variables defined on a set X and let S
be a subset of X .

The point x∗ is a local maximiser of f (x) subject to x ∈ S if there is a
number ε> 0 such that f (x) ≤ f (x∗) for which the distance between
x and x∗ is at most ε.

x∗
1 x∗

2 x∗
3

(x∗1 −ε, x∗1 +ε) = S

x

y

Local maximum around the interval S
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INTRODUCTION
INCREASING TRANSFORMATIONS

PROPOSITION: Let g (z) be a strictly increasing function of a single
variable, that is:

if z′ > z ⇒ g (z′) > g (z)

then the set of solutions to the problem:

maxx f (x)
s.t . x ∈ S

is equal to
maxx g

(
f (x)

)
s.t . x ∈ S

REMARK: This fact is useful since a function f (x) can be
transformed in such a way that the resulting function is easier to
work with.
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INTRODUCTION
INCREASING TRANSFORMATIONS

Example: Consider the function u(x1, x2) = xα1 xβ2

It might be easier to work with the transformation v(x1, x2) =
ln((u(x1, x2))

v(x1, x2) =α ln x1 +β ln x2
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INTRODUCTION
MINIMISATION PROBLEMS

Throughout the previous slides we have only focused on
maximisation problems, but what about the minimisation ones?

As it turns out that any minimisation problem can be converted into
one of maximisation flipping upside down the objective function
f (x), so that:

minx f (x)
s.t . x ∈ S

is equal to
maxx − f (x)

s.t . x ∈ S
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INTRODUCTION
MINIMISATION PROBLEMS

Example:

−6 −4 −2 2 4 6

−4

−2

2

4 g (x) = x2 −4

x

y

Minimisation problem

−6 −4 −2 2 4 6

−4
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2

4 f (x) =−x2 +4

x

y

Maximisation problem
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INTRODUCTION
CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let f (x) be a continuous function
defined on X and let S be a compact subset of X . Then the problems:

minx f (x)
s.t . x ∈ S

and
maxx f (x)

s.t . x ∈ S

have solution.

COMPACT: a set S is said to be
compact if is closed and bounded

1 2 3 4 5

1

2

3

4

mi n

max

x

y

Rubén Pérez Sanz Optimisation 11 / 86



INTRODUCTION
CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let f (x) be a continuous function
defined on X and let S be a compact subset of X . Then the problems:

minx f (x)
s.t . x ∈ S

and
maxx f (x)

s.t . x ∈ S

have solution.

COMPACT: a set S is said to be
compact if is closed and bounded

1 2 3 4 5

1

2

3

4

mi n

max

x

y

Rubén Pérez Sanz Optimisation 11 / 86



INTRODUCTION
CONDITIONS OF AN OPTIMUM

EXTREME VALUE THEOREM: let f (x) be a continuous function
defined on X and let S be a compact subset of X . Then the problems:

minx f (x)
s.t . x ∈ S

and
maxx f (x)

s.t . x ∈ S

have solution.

COMPACT: a set S is said to be
compact if is closed and bounded

1 2 3 4 5

1

2

3

4

mi n

max

x

y

Rubén Pérez Sanz Optimisation 11 / 86



INTRODUCTION
CONDITIONS OF AN OPTIMUM

What if the conditions for an optimum are relaxed, i.e. are not met?:

BOUNDEDNESS: The set S is bounded if there exists a number k <
∞ such that the distance of every point in S from the origin is at most
k.
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INTRODUCTION
CONDITIONS OF AN OPTIMUM

Example:

Ï Bounded set: S = {(x, y) ∈R2|0 < x < 1,−10 ≤ y <π/2}

Ï Unbounded set: S = {(x, y) ∈R2|0 < x <∞,−10 ≤ y <π/2}

Example:

1 2 3 4 5

1

2

3

4

x

y

Bounded

1 2 3 4 5

1

2

3

4

x

y

Unbounded
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INTRODUCTION
CONDITIONS OF AN OPTIMUM

CLOSEDNESS:

Ï The set S of n-vectors is open if every point in S is an interior
point of S.

Ï The set S of n-vectors is closed if every boundary point of S is a
member of S.

1 2 3 4 5

1

2

3

4

mi n

max

x

y

Closed

1 2 3 4 5
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mi n
x

y
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INTRODUCTION
CONDITIONS OF AN OPTIMUM

CONTINUITY: a function is continuous if limx→a f (x) = f (a)

Example: relaxing continuity

0.5 1

−1

1

x

y

Non-continuous function
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INTERIOR OPTIMA
INTUITION

Economics is essentially a science of choice. When an economic
agent is set to choose among alternatives, some alternatives are
more desirable than others. She will choose best alternative
available.

In this sense we say that the agent maximises something. This quest
for the best is what we call optimisation.

In this lecture we will see conditions to maximise in an interior
point.
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INTERIOR OPTIMA
INTRODUCTION

DEFINITION: Let the function f (x) be defined on a set S. A point
x ∈ S is a stationary point of f (x) if f (x) is differentiable and fi (x) =
0, for i = 1,2, ....

a x∗ x′ x′′ b x′ x∗
Ï In the left figure the points x∗, x ′, x ′′ are stationary points and extreme

points. In the right figure x ′ is a stationary point but not a extreme

Ï On the left picture b is a extreme point but is not a stationary point
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INTERIOR OPTIMA
INTRODUCTION

So, In other words:

1. A stationary point might not be a local maximiser

2. A local maximiser might not be a stationary point

Then why is it interesting if at all?

The only case in which a local maximiser is not a stationary point is
when it is at the boundary of the set. That is, any interior point that
is a maximiser must be a stationary point.
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

PROPOSITION: Let f (x) be defined on the set S. If x is a maximiser
in the interior of S and the partial derivatives exist w.r.t. the i −
th variable. Then:

fi (x) = 0, ∀i = 1, ...,n

This result gives a necessary condition for x to be a maximiser (or a
minimiser) of f (x)

The condition is obviously not sufficient for a point to be a
maximiser (could be minimiser or inflexion point)

The first-derivative is involved, so we refer to the condition as a
first-order condition FOC
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

PROOF: Let the point x∗ be a local maximiser, then it is clear that
f (x∗

1 + h1,x−1) ≤ f (x∗
1 ,x−1) for any (x∗

1 + h1,x−1) ∈ S, or in other words
f (x∗

1 +h1,x−1)− f (x∗
1 ,x−1) ≤ 0.

Ï Approaching the point
from the right: h > 0 ⇒
limh+→0

f (x∗
1 +h1,x−1)− f (x∗

1 ,x−1)
h ≤ 0

Ï Approaching the point
from the left: h < 0 ⇒
limh−→0

f (x∗
1 +h1,x−1)− f (x∗

1 ,x−1)
h ≥ 0

1 2 3 4 5

1

2

3

4

mi n

max

x

y

Because the continuity of f (x), there will be a point on I such that f ′(x) = 0
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

The previous proposition give us the sufficient conditions for a point
to be a stationary point

IF:

Ï x∗ is a maximiser

Ï x∗ is in the interior of S

Ï fi exist ∀i = 1,2, ...

THEN:

Ï x∗ is a Stationary
Point, i.e.
f ′

i (x∗) = 0 ∀i = 1,2, ...
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,

they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Procedure to solve a maximisation problem

Let f be a differentiable function of n variables and let S be a set of
n-vectors. If the problem

maxx f (x)
s.t . x ∈ S

has solutions,they may be found as follows:

1. Use the FOC to find x∗ and evaluate f (x∗)

2. Along them find the values of the function at the boundary of S

3. The largest values of f (x∗) are the maximisers of f .

Rubén Pérez Sanz Optimisation 23 / 86



INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Example 1: Consider the problem:

max
x,y

f (x, y) =−(x −1)2 − (y +2)2

s.t . −∞< x <∞,

−∞< y <∞

The problem does not meet the conditions of the extreme value
theorem —x, y ∈ (−∞,∞) —so it is not possible to know beforehand
if the problem will have a solution.

First order conditions:

fx (x, y) =−2(x −1) = 0 ⇒ x∗ = 1

fy (x, y) =−2(y +2) = 0 ⇒ y∗ =−2

Then, the point (1,−2) is stationary, we do not know yet if it is a
maximiser.
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Example 2: Consider the problem:

max
x,y

f (x, y) = (x −1)2 + (y −1)2

s.t . 0 ≤ x ≤ 2,

−1 ≤ y ≤ 3

The problem does meet the conditions of the extreme value theorem
- x, y ∈ S - so it is possible to know beforehand that the problem will
have maximum(a) and minimum(a).

First order conditions:

fx (x, y) = 2(x −1) = 0 ⇒ x∗ = 1

fy (x, y) = 2(y −1) = 0 ⇒ y∗ = 1

Then the point (x∗, y∗) = (1,1) is stationary, where f (x∗, y∗) = 0
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Example 2: Continuation:
Now consider the behaviour of the objective function on the
boundary of the set S, which is a rectangle:

Ï Consider x = 0 and −1 ≤ y ≤ 3 then f (0, y) = 1+ (y −1)2. By the
FOC: fy (0, y∗) = 2(y−1) = 0 ⇒ y = 1 which is in i nt (S). Again we
look at the boundary points in

{
(0, y) ∈R2|−1 ≤ y ≤ 3

}
, i.e. the

points (0,−1) and (0,3) are the candidates for optima where the
value of the function is f (0,−1) = f (0,3) = 5

Ï A similar analysis leads to points (2,−1) and (2,3) being
candidates for optima and where the function attains f (2,−1) =
f (2,3) = 5

Comparing the values of the function at the stationary points (1,1)
and at the boundary points (0,−1), (0,3), (2,−1) and (2,3) we can
conclude that the function has 4 solutions.
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Example 3: Consider the problem:{
maxx,y f (x, y) = x2 + y2 + y −1

s.t . x2 + y2 ≤ 1
and

{
minx,y f (x, y) = x2 + y2 + y −1

s.t . x2 + y2 ≤ 1

These problems meet the criteria of the extreme value theorem and
hence they have solutions.
FOC:

fx (x, y) = 2x = 0 ⇒ x∗ = 0
fy (x, y) = 2y +1 = 0 ⇒ y∗ =−1

2

}
⇒ (x∗, y∗) =

(
0,−1

2

)
Then

(
0,−1

2

)
is a stationary point where f

(
0,−1

2

)=−5
4 .
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INTERIOR OPTIMA
FIRST ORDER CONDITIONS

Example 3: Continuation

Turning to the boundary points we look at points that lay on the
boundary, i.e. x2 + y2 = 1. Taking this equality into account the
problem can be transform:

from
maxx,y f (x, y) = x2 + y2 + y −1

s.t . x2 + y2 ≤ 1

into
maxy f (y) = 1+ y −1 = y

s.t . 0 ≤ y ≤ 1

Clearly the minimum of this new problem is at (1,0) and the
maximum at (0,1) where the functions attain 0 and 1 respectively.

Comparing the stationary and boundary points we see that the
maximum is at (0,1) and the minimum at

(
0,−1

2

)
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

MATHEMATICAL DETOUR:

Let f be a twice-differentiable function of n variables. The Hessian
Matrix of f at x is the matrix of second derivatives function, i.e.

H(x) =


fx1x1 fx1x2 · · · fx1xn

fx2x1 fx2x2 · · · fx2xn

...
...

. . .
...

fxm x1 fxm x2 · · · fxm xn


NOTE: because fi j = f j i the matrix is symmetric.
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

PROPOSITION: Let f (x) be a twice-differentiable function with
continuous partial derivatives and cross partial derivatives, defined
on the set S. Suppose that fi (x∗) = 0, ∀i for some x∗ in the interior of
S (so that x∗ is a stationary point of f ). Let H be the Hessian of f (x):

Ï If H(x∗) is negative definite then x∗ is a local maximiser

Ï If x∗ is a local maximiser then H(x∗) is negative semi-definite

Ï If H(x∗) is positive definite then x∗ is a local minimiser

Ï If x∗ is a local minimiser then H(x∗) is positive semi-definite
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

The previous slide implies that:

Ï If H(x∗) is negative semi-definite Then x∗ is either a maximiser
or a saddle point

Ï If H(x∗) is positive semi-definite Then x∗ is either a minimiser
or a saddle point

For this reason the determinant test should be summoned:

Ï If |H(x∗)| < 0 Then x∗ is a saddle point

Ï If |H(x∗)| > 0 and H(x∗) is n.s.d. Then x∗ is a maximum point

Ï If |H(x∗)| > 0 and H(x∗) is p.s.d. Then x∗ is a minimum point

Ï If |H(x∗)| = 0 Then the test is inclusive. Solve by inspection
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

−10

10
−10

10

−200

−100

f (x, y) =−x2 − y2

−10

10
−10

10

−100

100

f (x, y) =−x2 + y2
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

Example 1: Consider the problem:

max
x,y

f (x, y) = x3 + y3 −3x y

FOC:

fx (x, y) = 3x2 −3y = 0 ⇒ x2 = y
fy (x, y) = 3y2 −3x = 0 ⇒ x = y2

}
⇒ y = y4 then

(x, y) = (0,0)
(x, y) = (1,1)

}
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INTERIOR OPTIMA
SECOND ORDER CONDITIONS

Example 1:
Now the hessian of f (x, y) at (x, y) is:

H(x, y) =
(

6x −3
−3 6y

)
Turning to the hessian test:

1. |H(0,0)| = −9 < 0 then is a saddle point

2. |H(1,1)| = 27 > 0 also fxx (1,1) = 6 and fy y (1,1) = 6 and so the
point is a local minimiser
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INTERIOR OPTIMA
GLOBAL MAXIMISER

PROPOSITION: Let f (x) be a concave function defined on the
convex set S, and let x be in the interior of S.

Then

x∗ is a global maximiser if and only if x∗ is a stationary point of f , i.e.
fi (x) = 0 ∀i = 1,2, ...,n
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EQUALITY CONSTRAINTS
INTUITION

Example : consider the problem

max
x,y

f (x, y)

s.t . g (x, y) = c

From the picture we see that the
solution is where both lines are
tangent, i.e.

− fx (x∗, y∗)

fy (x∗, y∗)
=−gx (x∗, y∗)

g y (x∗, y∗)
x∗

y∗

g (x, y) = c

f (x, y) = m

x

y
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INTUITION
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max
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EQUALITY CONSTRAINTS
INTUITION

Example continuation : or
rearranging

− fx (x∗, y∗)

gx (x∗, y∗)
=− fy (x∗, y∗)

g y (x∗, y∗)

=λ

write this as two equations

fx (x∗, y∗)−λgx (x∗, y∗) = 0

fy (x∗, y∗)−λg y (x∗, y∗) = 0

x∗

y∗

g (x, y) = c

f (x, y) = m

x

y

We see that these conditions have to be satisfy at the solution,
together with

c − g (x∗, y∗) = 0
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EQUALITY CONSTRAINTS
INTUITION

The first two equations can
be viewed conveniently as the
conditions for the derivatives of
the Lagrangian

L (x, y) = f (x, y)−λ{
g (x, y)− c

}
with respect to x and y to be zero.

Known as the FOC

x∗

y∗

g (x, y) = c

f (x, y) = m

x

y
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

PROPOSITION : let f (x, y) and g (x, y) be continuously
differentiable functions of two variables defined on the set S,
let c be a number, and assume (x∗, y∗) is an interior point of S that
solves the problem:

maxx,y f (x, y)
s.t . g (x, y) = c

or
minx,y f (x, y)

s.t . g (x, y) = c

Suppose also that either gx (x, y) 6= 0 or g y (x, y) 6= 0.

Rubén Pérez Sanz Optimisation 40 / 86



EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Then there is a unique number λ such that (x∗, y∗) is a stationary
point of the Lagrangian:

L = f (x, y)−λ(
g (x, y)− c

)
That is, (x∗, y∗) satisfies the FOC:

Lx = fx (x, y)−λgx (x, y) = 0

Ly = fy (x, y)−λg y (x, y) = 0

Lλ = g (x, y)− c = 0
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 1: Consider the problem:

max
x,y

x y

s.t . x + y = 6

Where the objective function x y is defined on the set of all 2-vectors
and the set S is a line.

What does the extreme value theorem tell us about the solutions of
this problem? Nothing!!! the line is not bounded and the extreme
value theorem does not hold.

The Lagrangian is:

L (x, y,λ) = x y −λ(x + y −6)
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 1: Continuation:
FOC are:

Lx (x, y,λ) = y −λ= 0

Ly (x, y,λ) = x −λ= 0

Lλ(x, y,λ) = x + y = 6

These equations have a unique solution (x∗, y∗,λ∗) = (3,3,3). Also
we have gx = 1 6= 0 and g y = 1 6= 0, ∀(x, y), so if the problem has a
solution it must be at (3,3)
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 2: Consider the problem:

max
x,y

x2 y

s.t . 2x2 + y2 = 3

Where the objective function x y is defined on the set of all 2-vectors
and the set S is compact.

What does the extreme value theorem tell us about the solutions
of this problem? The elipse is compact, hence theorem tell us that
there is a solution.

The Lagrangian is:

L (x, y,λ) = x2 y −λ(2x2 + y2 −3)
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 2: Continuation:
FOC are:

Lx (x, y,λ) = 2x(y −2λ) = 0 (1)

Ly (x, y,λ) = x2 −2λy = 0 (2)

Lλ(x, y,λ) = 2x2 + y2 −3 = 0 (3)

To find the solutions to the system of equations notice that to meet
the first equation either x = 0 or y = 2λ.
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 2: Continuation:

In turns:
Ï If x = 0, then (3) implies y =±p3 and (2) resulst in λ= 0.

Ï If y = 2λ, plugging it into (2): x2 − y2 = 0 ⇔ x2 = y2 ⇔ x =±y
Ï If x = y , plugging this into (3) results in 3x2 = 3 ⇔ x =∓1 and as

a result y =±1
Ï If x =−y , plugging this into (3) results in 3x2 = 3 ⇔ x =±1 and as

a result y =∓1

Then the possible solutions are:

(0,
p

3,0) with f (0,
p

3) = 0 (0,−p3,0) with f (0,−p3) = 0(
1,1,

1

2

)
with f (1,1) = 1

(
−1,−1,−1

2

)
with f (−1,−1) =−1(

1,−1,−1

2

)
with f (1,−1) =−1

(
−1,1,

1

2

)
with f (−1,1) = 1
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EQUALITY CONSTRAINTS
NECESSARY CONDITIONS

Example 2: Continuation:

Now gx = 4x and g y = 2y , the only value in which gx = g y = 0 is (0,0).
At this point the constraint is not satisfied, thus the only solutions
are the ones that meet the FOC.

Since it is a maximisation problem we can safely conclude that the
only solution is (x, y) = (1,1) and (x, y) = (−1,1)
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EQUALITY CONSTRAINTS
LAGRANGE MULTIPLIERS

INTUITION: the value of the Lagrange multiplier at the solution of
the problem is equal to the rate of change in the maximal value of
the objective function as the constraint is relaxed.

Example: Consider the problem

max
x

x2

s.t . x = c

The solution of this problem is obvious: x = c. The maximised value
of the function is thus c2, so that the derivative of this maximised
value with respect to c is 2c.
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INTERIOR OPTIMA
LAGRANGE MULTIPLIERS

Let’s check that the value of the Lagrange multiplier at the solution
of the problem is equal to 2c. The Lagrangian is:

L (x) = x2 −λ(x − c)

so the first-order condition is

2x −λ= 0

The constraint is x = c, so the pair (x,λ) that satisfies the first-order
condition and the constraint is (c,2c). Thus we see that indeed λ is
equal to the derivative of the maximised value of the function with
respect to c.
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EQUALITY CONSTRAINTS
SUFFICIENT CONDITIONS

PROPOSITION: Let f (x, y) and g (x, y) be twice differentiable
functions of two variables defined on the set S and let c be a number.
Suppose that (x∗, y∗), an interior point of S, and the number λ∗

satisfy the first-order conditions:

fx (x∗, y∗)−λ∗gx (x∗, y∗) = 0

fy (x∗, y∗)−λ∗g y (x∗, y∗) = 0

g (x∗, y∗) = c

Then:

Ï If D
(
x∗, y∗,λ∗)> 0 then (x∗, y∗) is a local maximiser

Ï If D
(
x∗, y∗,λ∗)< 0 then (x∗, y∗) is a local minimiser
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EQUALITY CONSTRAINTS
SUFFICIENT CONDITIONS

DEFINITION: the determinant D
(
x∗, y∗,λ∗)

is called the Bordered
Hessian of the Lagrangian and takes the following form:

D
(
x∗, y∗,λ∗)=

∣∣∣∣∣∣
Lλλ Lλx Lλy

Lxλ Lxx Lx y

Lyλ Ly x Ly y

∣∣∣∣∣∣=
∣∣∣∣∣∣

0 gx g y

gx fxx −λgxx fx y −λgx y

g y fx y −λgx y fy y −λg y y

∣∣∣∣∣∣
With this in mind we can state the following result
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EQUALITY CONSTRAINTS
SUFFICIENT CONDITIONS

Example: Continuation of the previous one in "NECESSARY
CONDITIONS":

The possible solutions where worked out:

(0,
p

3,0) with f (0,
p

3) = 0 (0,−p3,0) with f (0,−p3) = 0(
1,1,

1

2

)
with f (1,1) = 1

(
−1,−1,−1

2

)
with f (−1,−1) =−1(

1,−1,−1

2

)
with f (1,−1) =−1

(
−1,1,

1

2

)
with f (−1,1) = 1

It seems obvious that the points (1,1) and (−1,1) where global maximisers
and the points (1,−1) and (−1,−1) where global minimisers.

But what about (0,
p

3) and (0,−p3)? They are neither optima, are they local
optima?
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EQUALITY CONSTRAINTS
SUFFICIENT CONDITIONS

Example Continuation: set the bordered hessian of the lagrangian
and calculate the determinant.

The determinant of the bordered hessian of the Lagrangian is in
general:

D
(
x, y,λ

)=
∣∣∣∣∣∣

0 4x 2y
4x 2y −4λ 2x
2y 2x −2λ

∣∣∣∣∣∣= 8
[
2λ

(
2x2 + y2)+ y

(
4x2 − y2)]

And at the solutions:

Ï ∣∣D(0,
p

3,0)
∣∣=−8 ·3

3
2 , and then (0,

p
3,0) is a local minimiser

Ï ∣∣D(0,−p3,0)
∣∣= 8 ·3

3
2 , and then (0,−p3,0) is a local maximiser
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

The Lagrangian method can easily be generalised to a problem of
the form:

max
x

f (x)

s.t . g j (x) = c j for j = 1, ...,m

where x = (x1, ..., xn).

Ending with a problem of n variables and m constraints.

The Lagrangian for this problem is:

L (x) = f (x)−
m∑

j=1
λ j

(
g j (x)− c j

)
That is, there is one Lagrange multiplier for each constraint.
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

DEFINITION: For j = 1, ...,m let g j (x) be a differentiable function of
n variables. The Jacobian Matrix of (g1, ..., gm) at the point x is: g1x1 (x) ... g1xn (x)

... ... ...
gmx1 (x) ... gmxn (x)
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

PROPOSITION: Let f (x) and g j (x) = c j for j = 1, ...,m be
continuously differentiable functions of n variables defined on the
set S, with m ≤ n, let c j for j = 1, ...,m be numbers, and suppose that
x∗ is an interior point of S that solves the problem:

max
x

f (x)

s.t . g j (x) = c j for j = 1, ...,m

or the problem

min
x

f (x)

s.t . g j (x) = c j for j = 1, ...,m

Suppose also that the rank of the Jacobian matrix of (g1, ..., gm) at the
point x∗ is m.

Rubén Pérez Sanz Optimisation 56 / 86



EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

Then there exist unique numbers λ1, ...,λm such that x∗ is a
stationary point of the Lagrangian function L defined by:

L (x) = f (x)−
m∑

j=1
λ j

(
g j (x)− c j

)
That is, x∗ satisfies the FOC:

Li (x) = fi (x)−
m∑

j=1
λ j g j xi (x) = 0 for i = 1, ...,n

In addition, g j (x∗) = c j for j = 1, ...,m
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

Example: Consider the problem:

min
x,y,z

x2 + y2 + z2

s.t . x +2y + z = 1

2x − y −3z = 4

The Lagrangian is:

L (x, y, z) = x2 + y2 + z2 −λ1
(
x +2y + z −1

)−λ2
(
2x − y −3z −4

)
This function is convex for any values of λ1 and λ2, so that any
interior stationary point is a solution of the problem. Further, the
rank of the Jacobian matrix is 2 (a fact you can take as given), so
any solution of the problem is a stationary point. Thus the set of
solutions of the problem coincides with the set of stationary points.
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

Example: Continuation:
FOC are:

2x −λ1 −2λ2 = 0 (1)

2y −2λ1 +λ2 = 0 (2)

2z −λ1 +3λ2 = 0 (3)

x +2y + z = 1 (4)

2x − y −3z = 4 (5)

Solving (1) and (2) for λ1 and λ2 gives:

λ1 = 2

5
x + 4

5
y (6)

λ2 = 4

5
x + 2

5
y (7)
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EQUALITY CONSTRAINTS
n VARIABLES AND m CONSTRAINTS

Example: Continuation:
Now substitute (6) and (7) into (3) and solve the system of equations:

x = 16

15
, y = 1

3
, z =−11

15
, λ1 = 52

75
and λ2 = 54

75

Then we can conclude that
(
x, y, z

) = (15
16 , 1

3 ,−11
15

)
is the unique

solution to the problem.
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EQUALITY CONSTRAINTS
ENVELOPE THEOREM

Example: Consider the following function f (x;r) = xr1 − r2x where
0 < r1 < 1. Which has a maximisation point at:

Using the FOC:

x∗ =
(

r1

r2

) 1
1−r1

The value of the function at that point is

f (x∗;r) =
(

r1

r2

) r1
1−r1 − r2

(
r1

r2

) 1
1−r1

It might be interesting to know the effect of r1 in the change of the
value function. Can you try it?
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EQUALITY CONSTRAINTS
ENVELOPE THEOREM

PROPOSITION: Let f (x;r) be a function of n variables, let r be a
h-vector of parameters, and let the n-vector x∗ be a maximiser of
f (x;r). Assume that the partial derivative f ′

n+k (x∗,r) (i.e. the partial
derivative of f (x;r) with respect to rk ) at (x∗,r ) exists. Define the
Value Function f ∗(r) of k variables by:

f ∗(r) = max
x

f (x;r), ∀rk .

If the partial derivative f ∗
k (r) exists then

f ∗
k (r) = fn+k (x∗,r).

For k = {1, ...,h}
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EQUALITY CONSTRAINTS
ENVELOPE THEOREM

INTUITION: we might be interested in seeing how the function at
the solution f (x∗;r) changes as some parameters r change.

RESULT: At the optimum only direct effects of the parameters into
the function need taking into account, the indirect effects can be
neglected since:

∂ f (x∗(r);r)

∂rk
= ∂ f (x∗(r);r)

∂x∗
i (r)

· ∂x∗
i (r)

∂rk
+ ∂ f ∗ (r)

∂rk

But at the optimum ∂ f (x∗;r)
∂x∗

i
= 0

Hence the result
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EQUALITY CONSTRAINTS
ENVELOPE THEOREM

Example: Consider the following function f (x;r) = xr1 − r2x where
0 < r1 < 1. Which has a maximisation point at:

x∗ =
(

r1

r2

) 1
1−r1

It might be interesting to know the effect of r1 in the change of the
value function. Thus by the envelope theorem:

∂ f (x∗(r) ;r)

∂r1
= (

x∗(r)
)r1 ln x∗(r )

or substituting x∗(r)

∂ f (x∗(r) ;r)

∂r1
=

(
r1

r2

) r1
1−r1 1

1− r1
ln

(
r1

r2

)
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INEQUALITY CONSTRAINTS
INTUITION

Many models in economics are formulated as problems with
inequality constraints.

Consider the consumer set of choices, we do not need to oblige the
consumer to spend all of his budget, some of it might be saved.

We
could consider

max
x

u(x)

s.t . p ·x ≤ w

t ·x+ l +n ≤ T

x ≥ 0

Variable sleeping time 2 4 6 8

2

4

6

g1(x, y) = M

g2(x, y) = M
x

y

Depending on u,p, w , we may have p ·x < w or p ·x = w
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INEQUALITY CONSTRAINTS
INTUITION

Considering the general case the constraint can be either g (x∗) = c
or g (x∗) < c, or in other words the constraint might be binding or
might be slack.

2 4 6 8

2

4

6

g2(x, y) = M

x

y

Binding constraint

2 4 6 8

2

4

6

g2(x, y) = M
x

y

Slack constraint
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INEQUALITY CONSTRAINTS
INTUITION

Consider the case when g (x∗) = c, i.e. the constraint is binding.

2 4 6 8

2

4

6

g2(x, y) = M

x

y

Binding constraint

If g (x∗) − c = 0 and the constraint
satisfies the FOC, then

Ï Li (x) = 0 ∀i

Ï and λ≥ 0

If λ < 0 then x∗ would lay within
the constraint, i.e. wouldn’t have
been a maximum in the first place.
Contradiction.
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INEQUALITY CONSTRAINTS
INTUITION

Consider the case when g (x∗) < c, i.e. the constraint is slack.
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Ï and λ= 0
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INEQUALITY CONSTRAINTS
INTUITION

Now we can combine the two cases and write the conditions as

Ï Li (x) = 0 for i = 1, ...,n

Ï λ j ≥ 0

Ï g j (x)− c j ≤ 0

Ï λ j
[
g j (x)− c j

]= 0 for j = 1, ...,n

The condition that either (i) λ j = 0 and g j (x∗) ≤ c j or (ii) λ j ≥ 0 and
g j (x∗) = c j is called the complementary slackness condition.

Note that we have not ruled out that both λ j = 0 and g j (x∗) = c
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INEQUALITY CONSTRAINTS
MINIMISATION PROBLEMS

What about the minimisation problems? we can convert a
maximisation problem into one of minimisation flipping upside
down the objective function f (x) (multiplying it by −1), so that:

max
x

f (x)

s.t . g j (x)− c j ≤ 0

is equal to min
x

− f (x)

s.t . g j (x)− c j ≤ 0

Ï REMARK 1: for Min we have λ j ≥ 0 ∀ j

Ï REMARK 2: for g j (x)− c j ≥ 0 then λ j ≥ 0

Ï REMARK 3: for Min and g j (x)− c j ≥ 0 then λ j ≤ 0
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

DEFINITION: let f (x) and g j (x) be differentiable functions of n
variables and let c j for j = 1, ...,m be numbers. Also define the
function L of n variables as:

L (x) = f (x)−
m∑

j=1
λ j

(
g j (x)− c j

)
for all x
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

The Kuhn-Tucker conditions of the problem:

max
x

f (x)

s.t . g j (x)− c j ≤ 0 for j = 1, ...,m

are:

Ï Li (x) = 0 for i = 1, ...,n

Ï λ j ≥ 0

Ï g j (x) ≤ c j

Ï λ j
[
g j (x)− c j

]= 0 for j = 1, ...,n
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

The SOLVING PROBLEM RECIPE: consider the following problem:

max
x

f (x)

s.t . g j (x) ≤ c j for j = 1, ...,m

Where x = (x1, ..., xn)
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

L (x) = f (x)−
m∑

j=1
λ j

(
g j (x)− c j

)
With λ1, ...,λm as the Lagrange multipliers with the m constraints

STEP 2: Equate all the first-order partial derivatives of L (x) to 0:

∂L (x)

∂xi
= ∂ f (x)

∂xi
−

m∑
j=1

λ j
∂g j (x)

∂xi
= 0 i = 1, ...,n
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions:

λ j
[
g j (x)− c j

]= 0, j = 1, ...,m

where either λ j > 0 or λ j = 0

STEP 4: Require x to satisfy the constraints:

g j (x) ≤ c j
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

Example :
Consider the problem

max
x1,x2

− (x1 −4)2 − (x2 −4)2

s.t . x1 +x2 ≤ 4

x1 +3x2 ≤ 9

4 9

2

4

6
Level curves of:
−(x1 −4)2 − (x2 −4)2

x
1 +

x
2 =

4

x1 +3x2 = 9

x1

x2
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

STEP 1: Write down the Lagrangian

L (x1, x2) =−(x1 −4)2 − (x2 −4)2 −λ1 (x1 +x2 −4)−λ2 (x1 +3x2 −9)

STEP 2: Equate all the first-order partial derivatives of L (x) to 0:

∂L (x1, x2)

∂x1
=−2(x1 −4)−λ1 −λ2 = 0

∂L (x1, x2)

∂x2
=−2(x2 −4)−λ1 −3λ2 = 0

∂L (x1, x2)

∂λ1
= x1 +x2 −4 = 0

∂L (x1, x2)

∂λ2
= x1 +3x2 −9 = 0
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

STEP 3: Impose the complementary slackness conditions, in other
words try the following four cases:

1. λ1 =λ2 = 0 which implies x1 +x2 < 4 and x1 +3x2 < 9

2. λ1 > 0 and λ2 = 0 which implies x1 +x2 = 4 and x1 +3x2 < 9

3. λ1 = 0 and λ2 > 0 which implies x1 +x2 < 4 and x1 +3x2 = 9

4. λ1 > 0 and λ2 > 0 which implies x1 +x2 = 4 and x1 +3x2 = 9
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

CASE 1: λ1 =λ2 = 0 which implies x1 + x2 < 4 and x1 +3x2 < 9, None of the
constraints are binding and the FOC become:

∂L (x1,x2)
∂x1

=−2(x1 −4) = 0
∂L (x1,x2)

∂x2
=−2(x2 −4) = 0

}
⇒ (x∗

1 , x∗
2 ) = (4,4)

BUT introducing these values into the constrain x1 +x2 ≤ 4:

4+4 ≤ 4 E

Hence arriving to a contradiction and being able to discard (4,4)
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

CASE 2: λ1 > 0 and λ2 = 0 which implies x1 + x2 = 4 and x1 +3x2 < 9, The
first constraint is binding but the sencond is not, the FOC become:

∂L (x1,x2)
∂x1

=−2(x1 −4)−λ1 = 0
∂L (x1,x2)

∂x2
=−2(x2 −4)−λ1 = 0

}
⇒ x1 = x2 (1)

∂L (x1, x2)

∂λ1
= x1 +x2 −4 = 0 (2)

Plugging (1) into (2)

x1 +x1 = 4 ⇒ x∗
1 = 2, x∗

2 = 2

Checking the result against the other constraint x1 +3x2 ≤ 9:

2+3 ·2 = 8 ≤ 9

And then the point (2,2) is a candidate for a solution
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

CASE 3: λ1 = 0 and λ2 > 0 which implies x1 + x2 < 4 and x1 +3x2 = 9, The
first constraint is not binding but the sencond is, the FOC become:

∂L (x1,x2)
∂x1

=−2(x1 −4)−λ2 = 0 ⇒λ2 =−2(x1 −4)
∂L (x1,x2)

∂x2
=−2(x2 −4)−3λ2 = 0 ⇒λ2 =− 2

3 (x2 −4)

}

⇒ x1 = 1

3
x2 − 8

3
(1)

∂L (x1, x2)

∂λ1
= x1 +3x2 −9 = 0 (2)
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

Plugging (1) into (2)

1

3
x2 − 8

3
+3x2 = 9 ⇒ 10

3
x2 = 19

3
⇒ x∗

2 = 19

10
; x∗

1 = 33

10

Checking the result against the other constraint x1 +x2 ≤ 4:

33

10
+ 19

10
= 52

10
≤ 4 E

Hence arriving to a contradiction and being able to discard
(33

10 , 19
10

)
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

CASE 4: λ1 > 0 and λ2 > 0 which implies x1 + x2 = 4 and x1 +3x2 = 9, now
both constraints are binding, the FOC become:

∂L (x1, x2)

∂x1
=−2(x1 −4)−λ1 −λ2 = 0

∂L (x1, x2)

∂x2
=−2(x2 −4)−λ1 −3λ2 = 0

∂L (x1, x2)

∂λ1
= x1 +x2 −4 = 0

∂L (x1, x2)

∂λ2
= x1 +3x2 −9 = 0
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

Solving the last two equations:

x1 +x2 = 4
x1 +3x2 = 9

}
⇒ (x∗

1 , x∗
2 ) =

(
3

2
,

5

2

)

Then the first two equations become:

5−λ1 −λ2 = 0
3−λ1 −3λ2 = 0

}
⇒λ1 = 6 and λ2 =−1 ≥ 0 E

Hence arriving to a contradiction and being able discard
(3

2 , 5
2

)
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INEQUALITY CONSTRAINTS
KUHN-TUCKER CONDITIONS

SOLUTION: so (x∗
1 , x∗

2 ,λ∗
1 ,λ∗

2 ) = (2,2,4,0) is the single solution of the
Kuhn-Tucker conditions. Hence the unique solution of the problem
is (x∗

1 , x∗
2 ) = (2,2)
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